Attention modulates gamma-band oscillations differently in the human lateral occipital cortex and fusiform gyrus.
نویسندگان
چکیده
We studied the existence, localization and attentional modulation of gamma-band oscillatory activity (30-130 Hz) in the human intracranial region. Two areas known to play a key role in visual object processing: the lateral occipital (LO) cortex and the fusiform gyrus. These areas consistently displayed large gamma oscillations during visual stimulus encoding, while other extrastriate areas remained systematically silent, across 14 patients and 291 recording sites scattered throughout extrastriate visual cortex. The lateral extent of the responsive regions was small, in the range of 5 mm. Induced gamma oscillations and evoked potentials were not systematically co-localized. LO and the fusiform gyrus displayed markedly different patterns of attentional modulation. In the fusiform gyrus, attention enhanced stimulus-driven gamma oscillations. In LO, attention increased the baseline level of gamma oscillations during the expectation period preceding the stimulus. Subsequent gamma oscillations produced by attended stimuli were smaller than those produced by unattended, irrelevant stimuli. Attentional modulations of gamma oscillations in LO and the fusiform gyrus were thus very different, both in their time-course (preparatory period and/or stimulus processing) and direction of modulation (increase or decrease). Our results thus suggest that the functional role of gamma oscillations depends on the area in which they occur.
منابع مشابه
Cholinergic enhancement modulates neural correlates of selective attention and emotional processing.
Neocortical cholinergic afferents are proposed to influence both selective attention and emotional processing. In a study of healthy adults we used event-related fMRI while orthogonally manipulating attention and emotionality to examine regions showing effects of cholinergic modulation by the anticholinesterase physostigmine. Either face or house pictures appeared at task-relevant locations, wi...
متن کاملLocalizing evoked and induced responses to faces using magnetoencephalography
A rich pattern of responses in frequency, time and space are known to be generated in the visual cortex in response to faces. Recently, a number of studies have used magnetoencephalography (MEG) to try to record these responses non-invasively - in many cases using source analysis techniques based on the beamforming method. Here we sought both to characterize best practice for measuring face-spe...
متن کاملThe many faces of the gamma band response to complex visual stimuli.
While much is known about the functional architecture of the visual system, little is known about its large-scale dynamics during perception. This study describes this dynamics with a high spatial, temporal and spectral resolution. We recorded depth EEG of epileptic patients performing a face detection task and found that the stimuli induced strong modulations in the gamma band (40 Hz to 200 Hz...
متن کاملSpatial attention modulates visual gamma oscillations across the human ventral stream
Oscillatory synchronization in the gamma frequency range has been proposed as a neuronal mechanism to prioritize processing of relevant stimuli over competing ones. Recent studies in animals found that selective spatial attention enhanced gamma-band synchronization in high-order visual areas (V4) and increased the gamma peak frequency in V1. The existence of such mechanisms in the human visual ...
متن کاملDistinct and convergent visual processing of high and low spatial frequency information in faces.
We tested for differential brain response to distinct spatial frequency (SF) components in faces. During a functional magnetic resonance imaging experiment, participants were presented with "hybrid" faces containing superimposed low and high SF information from different identities. We used a repetition paradigm where faces at either SF range were independently repeated or changed across consec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cerebral cortex
دوره 15 5 شماره
صفحات -
تاریخ انتشار 2005